MOLM-13 Xenograft Model

MOLM-13 xenograft model

Leukemia is cancer originating in blood-forming tissues, which affects the blood and bone marrow. According to the Leukemia Research Foundation, nearly 387,000 Americans currently live with leukemia, and more than 12,000 new cases of Acute myeloid leukemia (AML) are diagnosed annually. The parental MOLM-13 cell line has features of both AML and Myelodysplastic Syndromes (MDS). The MOLM-13 cell line was isolated from the peripheral blood of a patient at relapse of AML that evolved from MDS. A 2011 study published in Blood Cancer Journal, demonstrated that pacritinib, a tyrosine kinase inhibitor (TKI), with potent inhibitory activities against FLT3 and JAK2, was highly effective in blocking tumor growth in the MOLM-13 mouse xenograft model. Pacritinib inhibits the activity of FLT3 in the MOLM-13 xenograft model, and with its dual potent JAK2/FLT3 inhibition and a favorable pharmacokinetic profile could be a drug of choice in the treatment of AML patients. The MOLM-13 cell line (human leukemia) is used to create the CDX (Cell Line Derived Xenograft) MOLM-13 xenograft mouse model. The MOLM-13 xenograft model is a robust xenograft model to assess efficacy of inhibitors of FLT3 or HDAC (e.g. BPR1J-340, pracinostat, vorinostat).

Download Altogen Labs MOLM-13 Xenograft Model PowerPoint Presentation: PPT2

Basic study design

  1. MOLM-13 cells are trypsinized and then cell viability is determined (min 98% viability via trypan blue).  After adjusting the cell suspension concentation, one million cells (in 100 uL) of the matrigel + MOLM-13 mix are injected into a rear flank of a  10 to 12 week old athymic BALB/C or NOD/SCID mouse.  All sites of injection are monitored and until it is determined tumors are established.
  2. Tumors are continually measured (via calipers; digital) until tumor size averages 50-150 mm3.  Animals are then randomized into client described cohorts.  In-life injections are determined in the treatment table.
  3. Daily tumor measurements and mouse weights (3 times weekly) are documented.
  4. Animals are humanely euthanized when the predetermined size limit is reached.  Tissues are snap frozen in liquid nitrogen, prepared for histological analysis or nucleic acids isolated.

Get Instant Quote for
MOLM-13 Xenograft Model

Xenograft animal models are used to assess the effectiveness of drugs against specific types of cancer. New medicines are tested on staged tumor growths that have been engrafted via subcutaneous or orthotopic inoculation in an immunocompromised mouse or rat model. All clinically approved anti-cancer agents have been evaluated with conventional preclinical in vivo models. Xenograft studies can be highly complex, starting with the selection of the appropriate animal model, choice of tumorigenic cell line, administration method, dosing, analysis of tumor growth rates and tumor analysis (histology, mRNA and protein expression levels).

Altogen Labs provides an array of laboratory services using over 30 standard Cell Line Derived Xenograft (CDX) models and over 20 PDX models. Researchers investigating the role of specific proteins or gene products in regulating tumor growth can benefit from development of protein overexpression (genetically engineered to ectopically express proteins, tumor suppressors, or oncogenes) and RNAi cell lines with long term gene silencing. Altogen Labs provides quantitative gene expression analysis of mRNA expression (RT-PCR) and protein expression analysis using the WES system (ProteinSimple).

The dosing of the experimental compound of interest is initiated, for a staged study, when the mean tumor size reaches a specified volume (typically 50-100 mm3). In an unstaged study, the dosing of the compound of interest is initiated immediately after xenografting. Mice are dosed once or twice a day for 28 days (or other desired study duration) via the chosen route of administration. Tumor volume (mm3) is calculated via the “(W x W x L) / 2” formula, where W is tumor width and L is tumor length.

Animal handling and maintenance at the Altogen Labs facility is IACUC-regulated and GLP-compliant. Following acclimation to the vivarium environment, mice are sorted according to body mass. The animals are examined daily for tumor appearance and clinical signs. We provide detailed experimental procedures, health reports and data (all-inclusive report is provided to the client that includes methods, results, discussion and raw data along with statistical analysis). Additional services available include collection of tissue, histology, isolation of total protein or RNA and analysis of gene expression. Our animal facilities have the flexibility to use specialized food or water systems for inducible gene expression systems.

Following options are available for the MOLM-13 xenograft model:

  • MOLM-13 Tumor Growth Delay (TGD; latency)
  • MOLM-13 Tumor Growth Inhibition (TGI)
  • Dosing frequency and duration of dose administration
  • Dosing route (intravenous, intratracheal, continuous infusion, intraperitoneal, intratumoral, oral gavage, topical, intramuscular, subcutaneous, intranasal, using cutting-edge micro-injection techniques and pump-controlled IV injection)
  • MOLM-13 tumor immunohistochemistry
  • Alternative cell engraftment sites (orthotopic transplantation, tail vein injection and left ventricular injection for metastasis studies, injection into the mammary fat pad, intraperitoneal injection)
  • Blood chemistry analysis
  • Toxicity and survival (optional: performing a broad health observation program)
  • Gross necropsies and histopathology
  • Positive control group employing cyclophosphamide, at a dosage of 50 mg/kg administered by intramuscular injection to the control group daily for the study duration
  • Lipid distribution and metabolic assays
  • Imaging studies: Fluorescence-based whole body imaging, MRI

Get Instant Quote for
MOLM13 Xenograft Model